Minimal Paths between Maximal Chains in Finite Rank Semimodular Lattices
نویسنده
چکیده
We study paths between maximal chains, or “flags,” in finite rank semimodular lattices. Two flags are adjacent if they differ on at most one rank. A path is a sequence of flags in which consecutive flags are adjacent. We study the union of all flags on at least one minimum length path connecting two flags in the lattice. This is a subposet of the original lattice. If the lattice is modular, the subposet is equal to the sublattice generated by the flags. It is a distributive lattice which is determined by the “Jordan-Hölder permutation” between the flags. The minimal paths correspond to all reduced decompositions of this permutation. In a semimodular lattice, the subposet is not uniquely determined by the Jordan-Hölder permutation for the flags. However, it is a join sublattice of the distributive lattice corresponding to this permutation. It is semimodular, unlike the lattice generated by the two flags, which may not be ranked. The minimal paths correspond to some reduced decompositions of the permutation, though not necessarily all. We classify the possible lattices which can arise in this way, and characterize all possibilities for the set of shortest paths between two flags in a semimodular lattice.
منابع مشابه
Semimodular Lattices and Semibuildings
In a ranked lattice, we consider two maximal chains, or “flags” to be i-adjacent if they are equal except possibly on rank i . Thus, a finite rank lattice is a chamber system. If the lattice is semimodular, as noted in [9], there is a “Jordan-Hölder permutation” between any two flags. This permutation has the properties of an Sn-distance function on the chamber system of flags. Using these noti...
متن کاملA Generalization of Semimodular Supersolvable Lattices
Stanley [18] introduced the notion of a supersolvable lattice, L, in part to combinatorially explain the factorization of its characteristic polynomial over the integers when L is also semimodular. He did this by showing that the roots of the polynomial count certain sets of atoms of the lattice. In the present work we define an object called an atom decision tree. The class of semimodular latt...
متن کاملSlim Semimodular Lattices. II. A Description by Patchwork Systems
Rectangular lattices are special planar semimodular lattices introduced by G. Grätzer and E. Knapp in 2009. By a patch lattice we mean a rectangular lattice whose weak corners are coatoms. As a sort of gluings, we introduce the concept of a patchwork system. We prove that every glued sum indecomposable planar semimodular lattice is a patchwork of its maximal patch lattice intervals “sewn togeth...
متن کاملFinite distributive lattices are congruence lattices of almost- geometric lattices
A semimodular lattice L of finite length will be called an almost-geometric lattice, if the order J(L) of its nonzero join-irreducible elements is a cardinal sum of at most two-element chains. We prove that each finite distributive lattice is isomorphic to the lattice of congruences of a finite almost-geometric lattice.
متن کاملFast Möbius Inversion in Semimodular Lattices and ER-labelable Posets
We consider the problem of fast zeta and Möbius transforms in finite posets, particularly in lattices. It has previously been shown that for a certain family of lattices, zeta and Möbius transforms can be computed in O(e) elementary arithmetic operations, where e denotes the size of the covering relation. We show that this family is exactly that of geometric lattices. We also extend the algorit...
متن کامل